La constante de Avogadro

Alejandra Tonina (Argentina)

A principios del siglo XX el físico químico francés Jean Perrin recibió el Premio Nobel de Física por sus trabajos sobre la naturaleza de los sistemas materiales. Perrin había hecho grandes aportes en el entendimiento de la estructura de la materia. En ese momento los conceptos de partículas, moléculas, átomos y electrones como componentes de la materia, si bien ya estaban sólidamente establecidos, requerían aún de mayor comprobación experimental. Entre otras cosas, Perrin se preguntaba por qué si los gases pesan no se encuentra todo el aire comprimido en la superficie de la Tierra, sino que, por el contrario, subiendo a las más altas montañas e incluso más arriba se sigue encontrando aire, aunque en menor cantidad.

Para responder a sus preguntas hizo varios experimentos. Por métodos distintos y en forma indirecta, encontró valores muy similares para una constante íntimamente relacionada con la cantidad de partículas que hay en una sustancia: la llamada constante de Avogadro. Con sus experimentos Perrin confirmó que las pequeñas partículas que componen un sistema están en permanente movimiento, nunca en reposo, chocando una y otra vez entre sí, de modo que cambian todo el tiempo sus trayectorias, aun estando el sistema en equilibrio y a muy baja temperatura. Sus mediciones demostraron que este movimiento de las partículas —el movimiento browniano, predicho por Albert Einstein—, era correcto.

Pero, además, con estas mediciones obtuvo un valor para la constante de Avogadro. En total, Perrin había realizado tres experimentos distintos para medir esta constante y en los tres obtuvo valores extraordinariamente parecidos.

¿Cuántas moléculas, átomos o electrones hay en cierta cantidad de sustancia y cómo se cuentan?

La unidad que se usa en el Sistema Internacional de Unidades (SI) para la cantidad de sustancia es el mol y es una de las siete unidades de base.

En la actualidad el mol se define como la cantidad de sustancia en un sistema con tantas entidades elementales como cantidad de átomos hay en 0,012 kg de carbono 12. En esta definición los átomos están en su estado más bajo de energía, en reposo y sin interactuar unos con otros.

La definición del mol también determina el valor de la constante que relaciona el número de entidades de lo que se desea medir con la cantidad de sustancia para cualquier muestra: la constante de Avogadro (NA).

NA representa el número de entidades elementales (que pueden ser átomos, moléculas, iones, electrones, otras partículas, o grupos específicos de tales partículas) en un mol de una sustancia. Si el número de entidades de una sustancia Z es N(Z) y si n(Z) es la cantidad de sustancia de esas entidades, entonces: N(Z) = NA × n(Z)

El valor mejor medido para NA hasta el momento es 6, 022 140 857 (74) × 1023 mol−1.

El valor numérico de la constante de Avogadro depende del sistema de unidades que utilicemos para medirlo. Esto sucede con otras constantes, por ejemplo, para la velocidad de la luz (299 792 458 m/s), su valor numérico depende del tamaño que se eligió de forma convencional para el metro y el segundo. El mol también es una unidad elegida en forma convencional. Los metrólogos en sus laboratorios siguen realizando experimentos para conocer el valor más exacto posible para la constante de Avogadro, es decir el valor con la menor incertidumbre de medición1 que las nuevas tecnologías nos permiten en la actualidad. El experimento más importante realizado hasta el momento para lograrlo es la esfera de silicio.

La esfera de silicio

La esfera de silicio es la esfera más perfecta obtenida alguna vez por la Humanidad. Está hecha de un cristal casi puro de silicio 28. Fue pulida a tal grado que las diferencias de altura en la superficie son de tan solo 0,3 nm (0,3 nanómetros), casi el espesor de una capa de átomos.

El silicio tiene una estructura cristalina homogénea. El silicio 28 es un cristal en el que se puede medir muy bien la distancia entre los átomos que lo forman, usando difracción de rayos X. Midiendo el volumen de la esfera se puede calcular con muy alta precisión el número de átomos, y así determinar un nuevo valor, más exacto, de la constante de Avogadro.

Foto cedida por PTB.

La esfera de silicio, además, es hermosa.

El Proyecto Avogadro —nombre del proyecto internacional desarrollado con el fin de construir la esfera— involucra el trabajo en conjunto de reconocidos técnicos en el campo de las mediciones, pertenecientes a Institutos Nacionales de Metrología de Europa, Australia, Japón, Rusia y Estados Unidos.

Existe una relación muy estrecha entre la realización de la constante de Avogadro y la nueva definición del kilogramo, que se referirá a la constante de Planck. Por todo esto, el mundo metrológico espera con atención el nuevo valor experimental de la constante. A partir de 2019, ese valor será usado para redefinir el mol como la cantidad de sustancia de un sistema que contiene 6,022 140 76 × 1023 entidades elementales especificadas.

Seguramente, el Proyecto Avogadro, a Perrin le hubiera encantado.

La constante de Planck y la nueva definición del kilogramo

Para entender los procesos atómicos y moleculares de los elementos se necesita la Física cuántica, y la constante fundamental de todos los procesos cuánticos es la constante de Planck (h).

Los mayores esfuerzos tecnológicos para obtener el valor de esta constante en la práctica, están puestos en una balanza, la balanza de Kibble. Esta permite equilibrar una fuerza electromagnética dispuesta en uno de los brazos de la balanza con la fuerza peso de una masa ubicada en el otro extremo.

La fuerza electromagnética es la que ocurre (o se produce) en un cable o bobina conductora por donde circula una corriente eléctrica con determinada intensidad (I), a la que se le aplica un campo magnético perpendicular (B). Al hacerlo, se genera una fuerza en la bobina, la fuerza de Lorentz (FL), cuya magnitud es posible conocer aplicando una ecuación:

FL = B × I × L
(L es una cantidad geométrica propia de la bobina).

Para lograr el equilibrio de la balanza (que las fuerzas de ambos brazos de la balanza —la electromagnética y la de la pesa— sean de la misma magnitud), se puede ir modificando la intensidad de corriente hasta que la fuerza de Lorentz (B × I × L) sea igual a la fuerza peso de la masa ubicada en el otro brazo (m × g).

En equilibrio: B × I × L = m × g

Pero medir la cantidad geométrica de la bobina (L) y el campo magnético (B) es muy difícil. Para solucionar este problema, en 1976 Kibble propuso un cambio: utilizar la balanza de otro modo, el modo dinámico, que implica hacer mover la bobina en el campo magnético.

En el modo dinámico, la bobina se hace mover en el campo magnético lentamente, a velocidad constante, lo que induce una propiedad que sí se puede medir con exactitud: la tensión eléctrica (U).

En este caso, para estimar la tensión se aplica la ecuación:
U = B × L × v
Reemplazando y despejando términos se obtiene:
U × I = m × g × v

Ahora bien, la tensión eléctrica y la intensidad se pueden medir con muchísima exactitud a través de dos efectos cuánticos llamados el efecto Josephson y el efecto Hall cuántico.

Reemplazando y despejando términos, la ecuación resultante expresa una relación entre la masa y la constante de Planck (h):

m = C (fJ × f / g × v) × h

Las dos frecuencias (fJ y f), la masa y la velocidad son magnitudes que pueden medirse con mucha exactitud (y dependen de los valores acordados por convención para el metro y el segundo). Finalmente, C es una constante que engloba a otras constantes del experimento.

Las ecuaciones anteriores son ideales. En la práctica hay muchas correcciones que deben hacerse teniendo gran cuidado en las condiciones en las que se hacen las mediciones: medir la aceleración de la gravedad local, la velocidad constante, que el campo y la espira estén perfectamente alineados, etc. Todo esto contribuye a la evaluación final de la incertidumbre del experimento.

En el Proyecto Avogadro, la esfera de silicio representa una forma completamente distinta de medir h que al hacerlo con la balanza de Kibble, y esto se debe a que existe una relación estrecha entre la constante de Avogadro y la constante de Planck. Por esta razón había un interés doble en la comunidad metrológica en medir muy bien NA. Por un lado, para redefinir el mol, y por el otro para tener una medida de la constante de Planck. Así los valores aportados por ambos experimentos ayudaron a encontrar el mejor valor de la constante de Planck, lo que permitirá implementar los cambios que tendrá el Sistema Internacional de Unidades.